Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2313926

ABSTRACT

Hepatocellular carcinoma (HCC) remains one of the most common malignancies and the third cause of cancer-related death worldwide, with surgery being the best prognostic tool. Among the well-known causative factors of HCC are chronic liver virus infections, chronic virus hepatitis B (HBV) and chronic hepatitis virus C (HCV), aflatoxins, tobacco consumption, and non-alcoholic liver disease (NAFLD). There is a need for the development of efficient molecular markers and alternative therapeutic targets of great significance. In this review, we describe the general characteristics of HCC and present a variety of targeted therapies that resulted in progress in HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis C, Chronic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/etiology , Liver Neoplasms/pathology , Hepatitis B, Chronic/complications , Hepacivirus , Hepatitis C, Chronic/complications
2.
Cardiovasc Intervent Radiol ; 46(3): 327-336, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2301473

ABSTRACT

PURPOSE: The aim of this study was to analyze the impact of using intra-procedural pre-ablation contrast-enhanced CT prior to percutaneous thermal ablation (pre-ablation CECT) of colorectal liver metastases (CLM) on local outcomes. MATERIALS AND METHODS: This retrospective analysis of a prospectively collected liver ablation registry included 144 consecutive patients (median age 57 years IQR [49, 65], 60% men) who underwent 173 CT-guided ablation sessions for 250 CLM between October 2015 and March 2020. In addition to oncologic outcomes, technical success was retrospectively evaluated using a biomechanical deformable image registration software for 3D-minimal ablative margin (3D-MAM) quantification. Bayesian regression was used to estimate effects of pre-ablation CECT on residual unablated tumor, 3D-MAM, and local tumor progression-free survival (LTPFS). RESULTS: Pre-ablation CECT was acquired in 71/173 (41%) sessions. Residual unablated tumor was present in one (0.9%) versus nine tumors (6.6%) ablated with versus without using pre-ablation CECT, respectively (p = 0.024). Pre-ablation CECT use decreased the odds of residual disease on first follow-up by 78% (CI95% [5, 86]) and incomplete ablation (3D-MAM ≤ 0 mm) by 58% (CI95% [13, 122]). The odds ratio for residual unablated tumor for larger CLM was lower when pre-ablation CECT was used (odds ratio 1.0 with pre-ablation CECT vs. 2.52 without). Pre-ablation CECT use was not associated with improvements on LTPFS. CONCLUSIONS: Pre-ablation CECT is associated with improved immediate outcomes by significantly reducing the incidence of residual unablated tumor and by mitigating the risk of incomplete ablation for larger CLM. We recommend performing baseline intra-procedural pre-ablation CECT as a standard imaging protocol. LEVEL OF EVIDENCE: Level 3 (retrospective cohort study).


Subject(s)
Catheter Ablation , Colorectal Neoplasms , Liver Neoplasms , Male , Humans , Middle Aged , Female , Retrospective Studies , Contrast Media , Bayes Theorem , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Tomography, X-Ray Computed/methods , Colorectal Neoplasms/pathology , Catheter Ablation/methods , Treatment Outcome
3.
Diagn Pathol ; 18(1): 57, 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2305220

ABSTRACT

BACKGROUND: Angiomyolipoma is a benign mesenchymal neoplasm of a wide histological heterogeneity belonging to the PEComa "family." The liver, after the kidney, is their second most frequent location. However, inflammatory hepatic AMLs constitute a rare entity, with only fourteen documented cases until 2020. These neoplasms can overlap morphological features of IgG4-related diseases, being of great diagnostic relevance to demonstrating myomelanocytic-lineage differentiation of the neoplastic cells. CASE PRESENTATION: we present a new case of an inflammatory hepatic AML resembling an IgG4-related disease in a 35-year-old woman with a subcapsular 5 cm mass confined to segment VII of the right hepatic lobe. Although having reduced its size along the tumor's natural evolution, complete tumor resection was decided due to its hypermetabolic behavior (max. SUV = 12,6) assessed by PET-CT scan. Finally, the patient underwent a right hepatectomy due to spontaneous rupture and bleeding of the lesion during the intervention. All the diagnostic and therapeutic procedures occurred in the last months of the COVID-19 pandemic. CONCLUSIONS: This review aims to describe inflammatory hepatic AML histological and immunohistochemical features. We further sought to establish a clinicopathological contextualization of this tumoral subtype.


Subject(s)
Angiomyolipoma , COVID-19 , Gastrointestinal Neoplasms , Liver Neoplasms , Female , Humans , Adult , Angiomyolipoma/diagnosis , Angiomyolipoma/surgery , Angiomyolipoma/pathology , Liver Neoplasms/pathology , Positron Emission Tomography Computed Tomography , Pandemics , COVID-19 Testing
6.
Ann Surg Oncol ; 30(7): 4249-4259, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2302334

ABSTRACT

BACKGROUND: The COVID-19 pandemic strained oncologic care access and delivery, yet little is known about how it impacted hepatocellular carcinoma (HCC) management. Our study sought to evaluate the annual effect of the COVID-19 pandemic on time to treatment initiation (TTI) for HCC. METHODS: The National Cancer Database was queried for patients diagnosed with clinical stages I-IV HCC (2017-2020). Patients were categorized based on their year of diagnosis as "Pre-COVID" (2017-2019) and "COVID" (2020). TTI based on stage and type of treatment first received was compared by the Mann-Whitney U test. A logistic regression model was used to evaluate factors of increased TTI and treatment delay (> 90 days). RESULTS: In total, 18,673 patients were diagnosed during Pre-COVID, whereas 5249 were diagnosed during COVID. Median TTI for any first-line treatment modality was slightly shorter during the COVID year compared with Pre-COVID (49 vs. 51 days; p < 0.0001), notably in time to ablation (52 vs. 55 days; p = 0.0238), systemic therapy (42 vs. 47 days; p < 0.0001), and radiation (60 vs. 62 days; p = 0.0177), but not surgery (41 vs. 41 days; p = 0.6887). In a multivariate analysis, patients of Black race, Hispanic ethnicity, and uninsured/Medicaid/Other Government insurance status were associated with increased TTI by factors of 1.057 (95% CI: 1.022-1.093; p = 0.0013), 1.045 (95% CI: 1.010-1.081; p = 0.0104), and 1.088 (95% CI: 1.053-1.123; p < 0.0001), respectively. Similarly, these patient populations were associated with delayed treatment times. CONCLUSIONS: For patients diagnosed during COVID, TTI for HCC, while statistically significant, had no clinically significant differences. However, vulnerable patients were more likely to have increased TTI.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , United States/epidemiology , Humans , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/diagnosis , Time-to-Treatment , Pandemics , Liver Neoplasms/epidemiology , Liver Neoplasms/therapy , Liver Neoplasms/pathology , COVID-19/epidemiology
7.
Can J Gastroenterol Hepatol ; 2023: 8114732, 2023.
Article in English | MEDLINE | ID: covidwho-2291889

ABSTRACT

Background and Aims: COVID-19 has led to potential delays in liver cancer treatment, which may have undesirable effects on the prognosis of patients. We aimed to quantify the COVID-19 pandemic impact on the survival of patients with hepatocellular carcinoma (HCC) who underwent transarterial chemoembolization (TACE). Methods: A retrospective study was conducted in patients with HCC who underwent TACE at a tertiary care center during the prelockdown (March to July 2019) and lockdown (March to July 2020) periods. Demographic data, tumor characteristics, functional status, and vital status were collected from the hospital medical records. The endpoints were TACE interval, treatment response, and survival after TACE. Cox proportional hazards regression determined the significant preoperative factors influencing survival. Results: Compared to prelockdown, a significant delay occurred during the lockdown in repeated TACE treatments (76.7 vs. 63.5 days, P=0.007). The trend suggested a significant decrease in patients with HCC in the repeated TACE group (-33.3%). After screening, 145 patients were included (prelockdown (n = 87), lockdown (n = 58)). There was no significant difference in the 1-month objective response rate between the prelockdown and lockdown groups (65.5% vs. 64.4%, P=1.00). During follow-up, 56 (64.4%) and 34 (58.6%) deaths occurred in the prelockdown and lockdown groups, respectively (P=0.600). Multivariate analysis revealed no association between the lockdown group and decreased survival (HR 0.88, 95% CI 0.57-1.35, P=0.555). Conclusions: The impact of the COVID-19 pandemic on liver cancer care resulted in significant decreases and delays in repeated TACE treatments in 2020 compared to 2019. However, treatment delays did not seem to significantly impact survival.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Retrospective Studies , Pandemics , Treatment Outcome , Chemoembolization, Therapeutic/adverse effects , COVID-19/epidemiology , Communicable Disease Control
8.
Pathol Oncol Res ; 27: 588532, 2021.
Article in English | MEDLINE | ID: covidwho-2288595

ABSTRACT

Background and Objective: Hepatocellular carcinoma (HCC) is a highly aggressive malignant tumor of the digestive system worldwide. Chronic hepatitis B virus (HBV) infection and aflatoxin exposure are predominant causes of HCC in China, whereas hepatitis C virus (HCV) infection and alcohol intake are likely the main risk factors in other countries. It is an unmet need to recognize the underlying molecular mechanisms of HCC in China. Methods: In this study, microarray datasets (GSE84005, GSE84402, GSE101685, and GSE115018) derived from Gene Expression Omnibus (GEO) database were analyzed to obtain the common differentially expressed genes (DEGs) by R software. Moreover, the gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed by using Database for Annotation, Visualization and Integrated Discovery (DAVID). Furthermore, the protein-protein interaction (PPI) network was constructed, and hub genes were identified by the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape, respectively. The hub genes were verified using Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, and Kaplan-Meier Plotter online databases were performed on the TCGA HCC dataset. Moreover, the Human Protein Atlas (HPA) database was used to verify candidate genes' protein expression levels. Results: A total of 293 common DEGs were screened, including 103 up-regulated genes and 190 down-regulated genes. Moreover, GO analysis implied that common DEGs were mainly involved in the oxidation-reduction process, cytosol, and protein binding. KEGG pathway enrichment analysis presented that common DEGs were mainly enriched in metabolic pathways, complement and coagulation cascades, cell cycle, p53 signaling pathway, and tryptophan metabolism. In the PPI network, three subnetworks with high scores were detected using the Molecular Complex Detection (MCODE) plugin. The top 10 hub genes identified were CDK1, CCNB1, AURKA, CCNA2, KIF11, BUB1B, TOP2A, TPX2, HMMR and CDC45. The other public databases confirmed that high expression of the aforementioned genes related to poor overall survival among patients with HCC. Conclusion: This study primarily identified candidate genes and pathways involved in the underlying mechanisms of Chinese HCC, which is supposed to provide new targets for the diagnosis and treatment of HCC in China.


Subject(s)
Carcinoma, Hepatocellular/genetics , Liver Neoplasms/genetics , Biomarkers, Tumor/genetics , Carcinoma, Hepatocellular/epidemiology , Carcinoma, Hepatocellular/pathology , Cell Cycle/genetics , China/epidemiology , Computational Biology , Databases, Genetic , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Liver Neoplasms/epidemiology , Liver Neoplasms/pathology , Prognosis , Protein Interaction Maps , Signal Transduction/genetics
11.
Front Cell Infect Microbiol ; 12: 726263, 2022.
Article in English | MEDLINE | ID: covidwho-2198679

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which is resilient, highly pathogenic, and rapidly transmissible. COVID-19 patients have been reported to have underlying chronic liver abnormalities linked to hepatic dysfunction. Discussion: Viral RNAs are detectable in fecal samples by RT-PCR even after negative respiratory samples, which suggests that SARS-CoV-2 can affect the gastrointestinal tract and the liver. The case fatality rates are higher among the elderly and those with underlying comorbidities such as hypertension, diabetes, liver abnormality, and heart disease. There is insufficient research on signaling pathways. Identification of molecular mechanisms involved in SARS-CoV-2-induced damages to hepatocytes is challenging. Herein, we demonstrated the multifactorial effects of SARS-CoV-2 on liver injury such as psychological stress, immunopathogenesis, systemic inflammation, ischemia and hypoxia, drug toxicity, antibody-dependent enhancement (ADE) of infection, and several others which can significantly damage the liver. Conclusion: During the COVID-19 pandemic, it is necessary for clinicians across the globe to pay attention to SARS-CoV-2-mediated liver injury to manage the rising burden of hepatocellular carcinoma. To face the challenges during the resumption of clinical services for patients with pre-existing liver abnormalities and HCC, the impact of SARS-CoV-2 on hepatocytes should be investigated both in vitro and in vivo.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Gastrointestinal Diseases , Liver Neoplasms , Aged , COVID-19/complications , Humans , Liver/pathology , Liver Neoplasms/pathology , Pandemics , SARS-CoV-2
12.
Medicina (Kaunas) ; 58(12)2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2123747

ABSTRACT

Background and Objectives: Treatment of cancer patients during the COVID-19 pandemic has been a challenge worldwide. In accordance with the current recommendations for hepatocellular carcinoma (HCC) management during the COVID-19 pandemic, loco-regional therapy such as transarterial chemoembolization (TACE) was proposed with the purpose of achieving local tumor control and improving overall survival. The aim of this prospective cohort study was to evaluate the outcomes of TACE treatment in patients with HCC during the COVID-19 pandemic in comparison with the outcomes of patients treated in the pre-pandemic period. Materials and Methods: Between September 2018 and December 2021, 154 patients were managed by serial TACE procedures for different liver tumors. Ninety-seven patients met the study criteria and were divided into two groups: the study group n = 49 (patients treated from May 2020 to December 2021); the control group n = 48 (patients treated from September 2018 to May 2020). Results: The mean waiting time for TACE was significantly longer in the study group compared to the control group (p < 0.001). No significant difference in survival between the groups is noted (log-rank test p = 0.823). In multivariate analysis, the MELD score (HR 1.329, 95% CI 1.140−1.548, p < 0.001) remained a significant predictor of mortality. Conclusions: COVID-19 pandemic did not affect the final outcome of TACE treatment.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/therapy , Liver Neoplasms/pathology , Pandemics , Prospective Studies , Developing Countries , Treatment Outcome , Chemoembolization, Therapeutic/adverse effects , COVID-19/therapy , Retrospective Studies
13.
Front Immunol ; 13: 985781, 2022.
Article in English | MEDLINE | ID: covidwho-2022758

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a severe pandemic that has posed an unprecedented challenge to public health worldwide. Hepatocellular carcinoma (HCC) is a common digestive system malignancy, with high aggressiveness and poor prognosis. HCC patients may be vulnerable to COVID-19. Since the anti-inflammatory, immunomodulatory and antiviral effects of vitamin D, we aimed to investigate the possible therapeutic effects and underlying action mechanisms of vitamin D in COVID-19 and HCC in this study. By using a range of bioinformatics and network pharmacology analyses, we identified many COVID-19/HCC target genes and analyzed their prognostic significance in HCC patients. Further, a risk score model with good predictive performance was developed to evaluate the prognosis of HCC patients with COVID-19 based on these target genes. Moreover, we identified seven possible pharmacological targets of vitamin D against COVID-19/HCC, including HMOX1, MB, TLR4, ALB, TTR, ACTA1 and RBP4. And we revealed the biological functions, signaling pathways and TF-miRNA coregulatory network of vitamin D in COVID-19/HCC. The enrichment analysis revealed that vitamin D could help in treating COVID-19/HCC effects through regulation of immune response, epithelial structure maintenance, regulation of chemokine and cytokine production involved in immune response and anti-inflammatory action. Finally, the molecular docking analyses were performed and showed that vitamin D possessed effective binding activity in COVID-19. Overall, we revealed the possible molecular mechanisms and pharmacological targets of vitamin D for treating COVID-19/HCC for the first time. But these findings need to be further validated in actual HCC patients with COVID-19 and need further investigation to confirm.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , COVID-19/complications , Vitamin D/therapeutic use , Molecular Docking Simulation , Toll-Like Receptor 4/metabolism , Vitamins/therapeutic use , MicroRNAs/genetics , Antiviral Agents/therapeutic use , Cytokines/metabolism , Retinol-Binding Proteins, Plasma
15.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1450313

ABSTRACT

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Subject(s)
Eicosanoids/metabolism , Epoxide Hydrolases/biosynthesis , Macrophages/immunology , Neoplasm Metastasis/pathology , Receptors, Prostaglandin E, EP4 Subtype/biosynthesis , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Cell Line, Tumor , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/prevention & control , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phagocytosis/immunology , RAW 264.7 Cells
16.
PLoS One ; 16(8): e0256544, 2021.
Article in English | MEDLINE | ID: covidwho-1374151

ABSTRACT

BACKGROUND: Patients with hepatocellular carcinoma (HCC) represent a vulnerable population potentially negatively affected by COVID-19-associated reallocation of healthcare resources. Here, we report the impact of COVID-19 on the management of HCC patients in a large tertiary care hospital. METHODS: We retrospectively analyzed clinical data of HCC patients who presented at the Vienna General Hospital, between 01/DEC/2019 and 30/JUN/2020. We compared patient care before (period 1) and after (period 2) implementation of COVID-19-associated healthcare restrictions on 16/MAR/2020. RESULTS: Of 126 patients, majority was male (n = 104, 83%) with a mean age of 66±11 years. Half of patients (n = 57, 45%) had impaired liver function (Child-Pugh stage B/C) and 91 (72%) had intermediate-advanced stage HCC (BCLC B-D). New treatment, was initiated in 68 (54%) patients. Number of new HCC diagnoses did not differ between the two periods (n = 14 vs. 14). While personal visits were reduced, an increase in teleconsultation was observed (period 2). Number of patients with visit delays (n = 31 (30%) vs. n = 10 (10%); p = 0.001) and imaging delays (n = 25 (25%) vs. n = 7 (7%); p = 0.001) was higher in period 2. Accordingly, a reduced number of patients was discussed in interdisciplinary tumor boards (lowest number in April (n = 24), compared to a median number of 57 patients during period 1). Median number of elective/non-elective admissions was not different between the periods. One patient contracted COVID-19 with lethal outcome. CONCLUSIONS: Changes in patient care included reduced personal contacts but increased telephone visits, and delays in diagnostic procedures. The effects on long-term outcome need to be determined.


Subject(s)
COVID-19/epidemiology , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/diagnosis , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/therapeutic use , COVID-19/virology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Delayed Diagnosis , Female , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Staging , Pandemics , Patients/psychology , Retrospective Studies , SARS-CoV-2/isolation & purification , Survival Rate , Telemedicine , Tertiary Care Centers
17.
Bioengineered ; 12(1): 4054-4069, 2021 12.
Article in English | MEDLINE | ID: covidwho-1348035

ABSTRACT

During the pandemic of the coronavirus disease 2019, there exist quite a few studies on angiotensin-converting enzyme 2 (ACE2) and SARS-CoV-2 infection, while little is known about ACE2 in hepatocellular carcinoma (HCC). The detailed mechanism among ACE2 and HCC still remains unclear, which needs to be further investigated. In the current study with a total of 6,926 samples, ACE2 expression was downregulated in HCC compared with non-HCC samples (standardized mean difference = -0.41). With the area under the curve of summary receiver operating characteristic = 0.82, ACE2 expression showed a better ability to differentiate HCC from non-HCC. The mRNA expression of ACE2 was related to the age, alpha-fetoprotein levels and cirrhosis of HCC patients, and it was identified as a protected factor for HCC patients via Kaplan-Meier survival, Cox regression analyses. The potential molecular mechanism of ACE2 may be relevant to catabolic and cell division. In all, decreasing ACE2 expression can be seen in HCC, and its protective role for HCC patients and underlying mechanisms were explored in the study.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Carcinoma, Hepatocellular/genetics , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Neoplasm Proteins/genetics , Receptors, Virus/genetics , alpha-Fetoproteins/genetics , Age Factors , Aged , Angiotensin-Converting Enzyme 2/metabolism , Area Under Curve , COVID-19/virology , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Databases, Genetic , Datasets as Topic , Female , Gene Expression Regulation, Neoplastic , Humans , Liver Cirrhosis/diagnosis , Liver Cirrhosis/mortality , Liver Cirrhosis/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/mortality , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Proteins/classification , Neoplasm Proteins/metabolism , Protective Factors , Protein Interaction Mapping , ROC Curve , Receptors, Virus/metabolism , SARS-CoV-2/pathogenicity , Survival Analysis , alpha-Fetoproteins/metabolism
18.
J Formos Med Assoc ; 121(2): 454-466, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1330958

ABSTRACT

This review evaluates the ability of the fibrosis index based on four factors (FIB-4) identifying fibrosis stages, long-time prognosis in chronic liver disease, and short-time outcomes in acute liver injury. FIB-4 was accurate in predicting the absence or presence of advanced fibrosis with cut-offs of 1.0 and 2.65 for viral hepatitis B, 1.45 and 3.25 for viral hepatitis C, 1.30 (<65 years), 2.0 (≥65 years), and 2.67 for non-alcoholic fatty liver disease (NAFLD), respectively, but had a low-to-moderate accuracy in alcoholic liver disease (ALD) and autoimmune hepatitis. It performed better in excluding fibrosis, so we built an algorithm for identifying advanced fibrosis by combined methods and giving work-up and follow-up suggestions. High FIB-4 in viral hepatitis, NAFLD, and ALD was associated with significantly high hepatocellular carcinoma incidence and mortality. Additionally, FIB-4 showed the ability to predict high-risk varices with cut-offs of 2.87 and 3.91 in cirrhosis patients and predict long-term survival in hepatocellular carcinoma patients after hepatectomy. In acute liver injury caused by COVID-19, FIB-4 had a predictive value for mechanical ventilation and 30-day mortality. Finally, FIB-4 may act as a screening tool in the secondary prevention of NAFLD in the high-risk population.


Subject(s)
COVID-19 , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Fibrosis , Humans , Liver/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/pathology , SARS-CoV-2 , Severity of Illness Index
19.
Neuropeptides ; 89: 102159, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1225350

ABSTRACT

T cells of aged people, and of patients with either cancer or severe infections (including COVID-19), are often exhausted, senescent and dysfunctional, leading to increased susceptibilities, complications and mortality. Neurotransmitters and Neuropeptides bind their receptors in T cells, and induce multiple beneficial T cell functions. Yet, T cells of different people vary in the expression levels of Neurotransmitter and Neuropeptide receptors, and in the magnitude of the corresponding effects. Therefore, we performed an individual-based study on T cells of 3 healthy subjects, and 3 Hepatocellular Carcinoma (HCC) patients. HCC usually develops due to chronic inflammation. The inflamed liver induces reduction and inhibition of CD4+ T cells and Natural Killer (NK) cells. Immune-based therapies for HCC are urgently needed. We tested if selected Neurotransmitters and Neuropeptides decrease the key checkpoint protein PD-1 in human T cells, and increase proliferation and killing of HCC cells. First, we confirmed human T cells express all dopamine receptors (DRs), and glutamate receptors (GluRs): AMPA-GluR3, NMDA-R and mGluR. Second, we discovered that either Dopamine, Glutamate, GnRH-II, Neuropeptide Y and/or CGRP (10nM), as well as DR and GluR agonists, induced the following effects: 1. Decreased significantly both %PD-1+ T cells and PD-1 expression level per cell (up to 60% decrease, within 1 h only); 2. Increased significantly the number of T cells that proliferated in the presence of HCC cells (up to 7 fold increase), 3. Increased significantly T cell killing of HCC cells (up to 2 fold increase). 4. Few non-conventional combinations of Neurotransmitters and Neuropeptides had surprising synergistic beneficial effects. We conclude that Dopamine, Glutamate, GnRH-II, Neuropeptide Y and CGRP, alone or in combinations, can decrease % PD-1+ T cells and PD-1 expression per cell, in T cells of both healthy subjects and HCC patients, and increase their proliferation in response to HCC cells and killing of HCC cells. Yet, testing T cells of many more cancer patients is absolutely needed. Based on these findings and previous ones, we designed a novel "Personalized Adoptive Neuro-Immunotherapy", calling for validation of safety and efficacy in clinical trials.


Subject(s)
Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Neuropeptides/pharmacology , Neurotransmitter Agents/pharmacology , Programmed Cell Death 1 Receptor/biosynthesis , Programmed Cell Death 1 Receptor/genetics , T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/metabolism , COVID-19/complications , Carcinoma, Hepatocellular/pathology , Dopamine/pharmacology , Dopamine Agonists/pharmacology , Humans , Immunotherapy , Killer Cells, Natural/metabolism , Liver Neoplasms/pathology , Receptors, Glutamate/drug effects , Receptors, Neuropeptide/metabolism , Receptors, Neurotransmitter/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL